SPECTRUM OF SMALL PERTURBATIONS IN PLANE
CONCRETE FLOW

V. N. Shtern

The behavior of the eigenvalue spectrum in the general case of flow in a plane-parallel channel for
small Reynolds number R was studied in paper [1]. The direct numerical calculation of the spectrum of
small perturbations for plane Couette and Poisuille flow,carried out in [2-4], covers a comparatively wide
range of variation of R, but was performed for fixed values of the wave number « in a fairly narrow range.

The present paper studies the eigenvalue spectrum as a function of the wave number over its whole
range of variation for the case of plane Couette flow.

The problem reduces to finding the eigenvalues of the equation
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Here ¢(y) is the complex amplitude of the stream function of the perturbed motion, C =X + iY is the
required eigenvalue, the physical meaning of X is the phase velocity, while the case Y < 0 corresponds to
a damping of the perturbation.

For small values of o the behavior of the eigenvalue spectrum can be described by the functions
Xp=0, Yy=—B2/aR, k=1,2,3,..., (2)
Here Sy are numbered in increasing order of the modulus of the roots of the equation
(Btgh-+athe)(atgB —Btha)y=0". (3)

For large « the following asymptotic function is satisfied for all the spectral numbers

Yp=—a/R,  k=1,2,3 .., - (4)
m'lh Vi X !
- \! v
2 AN y%

2

N s
1 , | Y A
/

—
R
AN

.5)&
H 5~7
7 //7/
1
i =4
7 1 o . ®
e 7a 7 w /
Fig. 1 Fig. 2

Novosibirsk., Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 1,
pp. 189-190, January-February, 1970. Original article submitted April 15, 1969,

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

196



Thus the part played by direct numerical calculation is reduced to filling in the "gaps" between re~
gions where the functions (2) and (4) are valid. The calculations were carried out on a BESM-6 digital
computer using a method of stepwise integration [5], modified for asymmetric velocity profiles.

The functions Yi(o) are given in Fig. 1 for R = 104, k=1, ..., 8. Line 9 corresponds to function {4).
The digposition of the eigenvalues in the complex plane C =X + iY is shown in Fig. 2 for variable a. The
line X = 0 is an axis of symmetry.

n accordance with general laws [1] the perturbations are damped for small &, remaining monotonic
(X = 0). The eigenvalues exhibit multiplicity points for certain values of «, after which the perturbations
begin to have a wave-like character, while a pair of waves arises similar in damping Y and phase velocity
|X|, but travelling in opposite directions. Each of these waves propagates in its own half of the stream since
the eigenfunction is usually nonzero only in a small neighborhood of the point ye = X.

However, the spectral structure is more complicated here than in the cases considered in papers
[2-4], and new interesting effects appear, associated with the multiplicity points. After the multiplicity
point of the second and third eigenvalues for « = 0.0038, |X] at first increases for the wave pair as « in~
creases, but subsequently decreases again to zero for @ =0.0057, where the second and third eigenvalues
again have a multiplicity point, subsequently separate and become purely imaginary. As « increases still
further Y, decreases until the third eigenvalue has a multiplicity point with the fourth (which is purely
imaginary up to this point) for « = 0.006, and subsequently forms a complex conjugate pair of decrements
iCk (k = 3, 4). Somewhat later for @ = 0,008 there is a confluence of the second and first eigenvalues, after
which a complex conjugate pair is formed iCy (k = 1, 2).,

This set of four eigenvalues does not suffer any further interchanges. For all k,|X|i increase and
tend to unity for o — e, i.e., the perturbations are localized at the walls. The quantities Y, , and Y4 4 also
increase, attain their maximum values 0.021 and 0.033 for « equal to 59 and 105 respectively. They then
decrease and end up as the asymptotic function (4).

The second set of four eigenvalues k = 5, 6, 7, 8 behaves in a similar manner. It is characteristic
that if we observe the intersection of the functions Yk(«) for various k and intermediate values of o, the
decrements once again rearrange themselves in the same order as for small @ when we approach the
asymptotic function (4). It is clear from Fig. 2 that the points where Y reaches its greatest value for ali
spectral numbersk, lie in the neighborhood of C = 21, Calculations show that the points C =1 are limiting
points for the eigenvalues when « and k are arbitrary fixed values and R — =,
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